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ABSTRACT 
Using young rainbow trout (Salmo gairdneri Richardson, 1836) estimates of the parameters in a physiol­

ogical growth equation were provided by aquaria experiments. In connection with a previous paper on 
production planning of fish farms (Sparre, 1976), it is of paramount importance to solve the following 
problem: If on a given date, a trout has a given weight, which weight will the trout have obtained at a 
certain later date, when the temperature of the water has a certain degree and when the trout is given a 
certain quantity of food? 

The main emphasis has been placed on the numerical prediction of growth patterns, rather than on 
giving physiological or ethological explanations to the observed growth patterns. 

* Address: Danish Trout Culture Research Station, Bmns, 6780 Ska:rba:k, Denmark. 
* * The Danish Institute for Fishery and Marine Research, Charlottenlund Castle, DK-2920 Charlotten­

lund, Denmark. 



276 0. SPERBER, J. FROM AND P. SPARRE 

1. INTRODUCTION 

The applied model describes growth as the difference of what goes into and what 
goes out of the body. The fate of the food eaten is decribed as: 

(food ration)= (assimilated part of the food)+ (undigested part ofthe food) 
(assimilated part of the food) = (production) +(the part of the f<;>od assimilated 

which gives energy to the different functions of the organism) 

One possibility is to develop the model along the lines laid down by,Warren and Davis 
( 1967) where all terms are measured as energy. The present work consists however 
of procurements of data for a much less complicated growth model based on wet 
weight measurements of food and production. 

The purpose of the experiments is to develop a growth model applicable for pro­
duction planning in practical fish farming, (which in. Denmark means breeding of 
rainbow trout) i.e. to solve the following problem: If on a given date, a trout has a 
given weight, which weight will the trout have obtained at a certain later date, 
when the temperature of the water has a certain degree and when the trout receives 
a certain quantity offood? 

As we do not consider results obtained in aquaria experiments as being fully valid 
under pond conditions, these experiments are to be considered as pilot experiments. 
The next step in the progress will be to design pondbased experiments on the basis 
of the present work. 

The theoretical part of this work is prima:r:y a development of an experimental 
design and a discussion of the mathematics appli('d in the description of growth. 
,We do not present any new theories on physiology or ethology. 

To aid memory all symbols used in the paper are listed in the Appendix. 

2. CHOICE OF GRQWTH MODEL 

,Winberg ( 1956) developed a growth equation which has gained wide application. 
(E.g. Paloheimo and Dickie, 1965, 1966a and b, and Kerr 1971a and b). The basic 
energy equation of Wi~berg is: 

(energy ofweight increase)+ (energy of metabolism)= 
(physiologically useful energy) = 
0.8 X (energy ofration) 

Winberg's energy of metabolism is estimated as the energy equivalent of the oxygen 
consumption of a comparatively quiet fish, and multiplied by 2 to match the meta­
bolism of a more active feeding fish. To ,Winberg the metabolic level is a function of 
activity. He does not appreciate feeding catabolism as physiologically distinct from 
active metabolism. Contrary to this Ursin, 1967, recognizes feeding catabolism as a 
mainly physiological event: The fed fish has a higher metabolic rate than the fasting 
one, even when at rest. The activity necessitated by feeding is pushed into the back­
ground, being made proportional with the ration taken. 

The present experiments are based on U rsin's model, recognizing feeding cata­
bolism as a mainly physiological event. The basic equation is Ursin's development 
ofPutter's equation (Putter, 1920). Putter's equation is nowadays called "the original 
Bertalanffy growth equation" (cf. e.g. Weatherley, 1972). 

, 
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3. URSIN'S GROWTH MODEL 

This section gives a concentrated presentation of Ursin's growth model, and parts 
ofit are quotations from his 1967 paper. The basic equation is 

dw( r) = rfdR( r)\ _ G (w( r) r(dR( r)\) 
dr \ dr I \ ' \ dr I 

w( r) =weight at time T 

dR( r)/dr =weight of food consumed pr time unit. 
r(dR(r)Jdr) =the anabolic term (the "build up term") 
G(w(r), r(dR(r)/dr)) =the catabolic term (the "break clown term"). 

( 1) 

Equation ( 1) expresses that the quantity absorbed is a function of the quantity 
eaten, whereas the quantity lost is a function of: _(I) the size of the fish, because even 
in a fasting fish every cell must metabolize to remain alive; and (II) of the food 
absorbed, because digesting and assimilating food require energy. The catabolic term 
G of equation ( 1) can be assumed to consist of two additive terms representing: (I) 
the catabolism of a fasting fish; and (II): the extra catabolism necessitated by feeding 
partly because mechanical work is involved in eating and digestion, and partly 
because an extra breakdown is necessary to supply free energy for synthesis of tissue. 
Fasting catabolism plus feeding catabolism make upp the total catabolism of a fed 
fish. ,We assume that fasting catabolism depends on the size of the fish only and that 
feeding catabolism depends on the quantity of food absorbed only. 

A basic assumption underlying this model is that the chemical composition of food 
and fish does not vary with time. 

The anabolic term. The following functional coherence is assumed to be valid 

dR(r)/dr =Jhw(r)m (2) 

wherefis the feeding level, his the coefficient of anabolism and m is the exponent of anabolism. 
The feeding levelfis defined as the fraction eaten of the quantity which could possibly 
be eaten. Thusfis a real number 0 ~f~ 1. The feeding level for a starvir,ig fish is 
0 and a fish eating at the maximum level gets f = 1. The food ration corr~ponding 
to f= 1 is designated (dRJdr)max· J= "E./"E.L in the notation of Beverton and Holt 
(1957)'!' fvarying from 0 to 1 corresponds to the food intake dRjdr = j(dR/dr)max· 

The measurement ofjinvolves a measurement of the intricate quantity (dRjdr)max . 
. We do not possess a method which provides an objective measurement of the true 
maximum rate of feeding. Our concept of maximum rate of feeding is closely related 
to our technique of feeding, the applied equipment, etc. However, whether our 
measurement of (dRJdr)max actually represents the possible maximum rate of feeding 
is not the most important aspect. If our measurements constitute a certain percentage, 
say x%, of the true maximum obtainable rate of feeding at every single experiment, 
these results are as usable as if we obtained 100 %. If the percentage x, remains con­
stant during all experiments, then the observations are applicable for a prediction of 
growth under the specific conditions to which this work is limited. And, after all, it 
is an utopia to think that you can give a growth model, which can be used in every 
situation. 

* Beverton and Holt, 1957 (§ 9. 4. 3. 2. 2. page 118) denote by ; the actual consumption of food per unit 
of time for a fish bf a given size, and by ;L the maximum ration a fish of this size would consume. The 
intensity of feeding is then defined as (;L- ;)(;Land it follows that ;(;L equals the feeding level. 
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Let f3 be the fraction of the food eaten absorbed through the intestinal walls. Then 
the anabolic term becomes 

r(dR(r)/dr) = j3dR(r)/dr =j3fhw(r)m (3) 

The quantity absorbed is assumed to be proportional to the absorbing surface (the 
area of the intestine) which if the fish grows like similar bodies is proportional with 
w 213

• By letting the anabolic exponent be a parameter we do not put such a restric­
tion on growth (cf. Hemmingsen, 1950). 

The catabolic term. ( 1) The fasting catabolism. ,We assume that 

(dw(r)/dr)rasting = -kw(r)n 
.~ i(', 

where k is the catabolism coefficient and n is the- ~holism exponent. 

(4) 

Fasting catabolism equals Putter's catabolic term -kw, and is the rate of weight 
loss of a fish behaving normally. But to put the fasting catabolism = -kw, is unsatis­
factory because there is evidence from respiration experiments that the fasting cata­
bolism is not usually proportional with weight. 

Although catabolic processes are going on all over the body, the necessary oxygen 
supply has to be introduced through some surface or other, mainly the gills. Appendix 
XIV, Ursin (1967) refers to experiments which show that the gills do not grow 
like similar bodies because new units are being added as the fish grows. 

(2) The feeding catabolism. Let rx be the fraction of the food absorbed producing the 
energy to eat and absorb the food (digestion, assimilation, storage of materials con­
sumed and activity caused by the food intake). The feeding catabolism is assumed to be 

-rxf3dR(r)fdr 

(4) and (5) constitute the total catabolism: 

-G(w(r),T(dR(r))dr)) = -kw(r)n -rxj3dR(r)/dr 

Inserting (3) and (6) into ( 1) gives Ursin's growth equation 

dw(r)/dr = f3(1-rx)fhw(r)m -kw(r)n 

(formula (7) equals (B8) in Ursin's paper, page 2365). 

(5) 

(6) 

(7) 

4. THE RELATION BE--r:WEEN CONSUMPTION AND PRODUCTION 

This section deals with the possible feeding level dependence of the factors f3 ( 1 - rx) 
in (7). >Write for short 

L(f) = f3(f)() -rx(f)) 

Three possibilities are considered 
LI(f) = f3o ( 1 - Cof) ( 1 - CXo) ( 8. 1 ) 

L2 (f) = f3o ( 1 - Aof) (8.2) 

La (f)= f3o(l-Cof)(l-Aof) = f3o(l -(Co +Ao)f+AoCo.f) (8.3) 

In (8.1) rx is _assumed to be constant and f3 = f30 ( 1 - C0f) is assumed to decrease with 
increasing f (f30 and C0 are constants). U rsin ( 196 7) defines f3 = 1 - exp (-h2 /f) 
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where h2 is a constant. This expression of f3 has the same basic properties as (8.1) and 
(8.1) is chosen because of its simplicity. 

In (8.2) it is assumed that f3 is constant and that ex is a function off: ex = A0 j, where 
A0 is a constant. 

A single pilot experiment to investigate a possible feeding level dependence of f3 
has been carried out. A group of 3 trout were offered maximum ration (f = 1.0) and 
another group of 3 trout were offered a ration corresponding to J = 0.4. Each trout 
had it's own aquarium. Faeces of the two groups were analyzed for kcal/g dry weight 
(by bomb calorimetry). The values observed were 3.57, 3.66 and 3.66 kcal/g for the 
trout eating at maximum ration and 2.4 7, 2.54 and 2.55 kcal/g for the trout eating 
at]= 0.4. The average values 3.63 and 2.52 kcal/g resp. provide a highly significant 
difference. 

In (8.3) both tX and f3 are assumed to be functions off As C0 < 1, A0 < 1 and]~ 1 
it is seen that (C0 +A0 )j>A0 C0 j2, so that (8.1) and (8.2) both may be considered as 
approximations of (8.3). 

From the experimental design used in this work it is not possible to compare the 
three models (8.1), (8.2) and (8.3). Consequently, a common model 

L(f) = B(l -Af) (9) 

is chosen, and (9) may be interpreted as any of the three models. Davis and ,Warren 
( 1971) consider both ( 1 -ex) and f3 as decreasing functions of feeding level. 

Inserting (9) into (7) gives the growth equation 

I dw(T)jdT = B(l-Aj)jhw(T)m -kw(T)n ( 1 0) 

So far the progress is in accordance with U rsin. In the next section some new aspects 
of growth models will be discussed. 

5. STOCHASTIC GROWTH EQUATION 

In the initial phase of the development we were concerned only about the physi­
ological processes. The purpose was to design experiments from which the parameters 
of Ursin's deterministic growth model could be estimated, and the calculation of 
the estimates should be performed by aid of "some regression analysis". 

As the experiments were performed various models of regression analysis were 
developed. It turned out that the estimates were highly dependent on the choice of 
statistical model. As the confusion in regard to the choice of statistical model grew, 
also the desire of a more explicit formulation of the assumptions behind the various 
models increased. These assumptions may be conscious or unconscious. An example of 
such an apparently unconcious assumption is the Markov assumption. That we 
made this assumption to growth was realized by an examination of experiments 
already performed. 

The basic problem is the integration of ( 1 0). It is necessary to integrate ( 1 0) 
because it is impossible to measure the actual value of dwjdT. Let ~w = w( To+~ T) -
w( To) where ~wand~ Tare large enough to be measured with a reasonable accuracy, 
say, let ~T be of the order of magnitude 10 days. Then by integrating (10) formally 

~W 1 fro+t.r 
~ = ~T 

70 

{B(l-Af)jhw(T)m -kw(T)n}dT (11) 
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The actual growth curve w( r) has not been observed. Therefore an approximation 
to (11) is applied. Let w = (w(r0 )+w(ro+ilr))/2, and assume that w(r) in a time 
period of length ilr is approximately linear. Then 

( 12) 

( 12) represents a relation applicable for practical experimental design. ( 11) represents 
integration over a relatively short time period. Having estimated the growth para­
meters on the basis of ( 12) the next step will be to integrate over a longer time period 
to obtain the entire growth curve. Thus the integration of ( 1 0) plays an important 
role in the development of a growth curve. _ 

Beverton and Holt (1957), Ursin (1967) and many others consider the integration 
of (10) as a purely mathematical problem. In our opinion this is not the case. 

To facilitate notation, let H = B(1 -Af)fh and 'Y(w) = Hwm -kwn. In the 
following f is assumed to be constant. Then ( 11) can be written 

w(r1 ) = w(r0 ) + Il 'Y(w(r))dr (13) 

As a matter of fact, the growth of one fish (or any finite number of fish) is not a 
deterministic process. In some way ( 13) must be considered as the mean value of 
something. The definition of a mean value concept applicable to (13) implies that 
certain assumptions of the growth process must be done. 

To define the stochastic process {w(r)lr ~0} (13) is rewritten 

w(r+dr) =w(r)+'Y(w(r))dr+? (14) 

where "?" stands for some "stochastic term". Thus the approach is to consider the 
growth process as a continuous autoregressive sheme. The randomness of the growth 
is assumed to consist of a number of stochastic terms, each of which is related to the 
different physiological processes which altogether constitute the growth process. Let 
these stochastic terms be a family of stochastic processes Q; ( T) , ~ ( T), . . . . . Let 
0.., (dr) = 0.., ( T + dr) - 0.., ( r). Now ( 14) becomes: 

w(r+dr) = w(r) +'Y(w(r))dr+~Q,(dr) (15) 
i 

And formally by integration of (15): 

w( Tl) = w( To)+ rl 'Y(w( r) )dr + Il t: 0.., (dr) ( 16) 

The integrals in ( 16) are stochastic integrals, since the left hand side w( rt) is a 
· stochastic variable. The theory of stochastic integrals is a highly mathematical topic, 
and will not be discussed in this context. (For a thorough discussion see e.g. Doob 
( 1953), Bartlett ( 1966) or Cox and Miller ( 1970)). Only the definition of a stochastic 
integral shall begiven, since this is what focus on our problems. 

Let Y( T) be a stochastic process in continuous time and with continuous state space. Let the 
time interval [To, T1] be partitioned into a set of disjoint subintervals 

[To, T1] = [To, s1] U]s1, s2] U ... U]sn-1, T1] and let stE]s1- 1 , s1] and A1 Y = Y (s1) - Y(s1-d. 
Let <I> ( T) be a function and let 

Un = t<I>(sl)A1Y 
j~1 
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If there exists a stochastic variable U so that 

lim E{l Un- Ul 2
} = 0 

n-+r1J 

<I> is said to be mean square Riemann-StielUes integrable and 

U = i~' (1> (s) Y(ds) 

( 17) is equivalent to lim E( UnUm) = f1 ~ 0 or 
n,m----t-oo 

lim i: ~<l>(s;*)<l>(st*)E(~iY~tY) =f1 ~0 
n,m--700 i=l i=l 
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( 17) 

( 18) 

IfY ( r) is a process with independent increment, i.e. if the differences Y ( r 1) - Y ( r 0), Y (r2) - Y (T1), ... , 
Y( rn)- Y( Tn-t) are mutually independent where r 0 < r 1 < ... , < Tn the condition ( 18) reduces 
to 

lim ~ <l>(s;*) 2 E(~iY) 2 = f1 ( 19) 
m-->OC j ~I 

(The variable names used ·in the definition of a stochastic integral are arbitrarily chosen and do 
not refer to concepts in the foregoing or in the following.) 

The next step is to construct a growth process with independent increment satis­
fying ( 19). The reason why only processes with independent increment are considered 
is due to our limited imagination. ,We are not able to state the properties of a growth 
process satisfying ( 17) but not being a process with independent increment. 

Let ~ ~ = (6. + (b and let the processes P 1 and P2 be defined by 

{b(dr) =Hw(r)mPI(dr) and {b(dr) =-kw(r)nP2 (dr) 

P 1 and P2 are assumed to be independent for all r. Inserting into ( 15) gives 

w(r+dr) = w(r) +Hw(r)m(dr+P1 (dr)) -kw(r)n(dr+P2 (dr)) (20) 

Assume that w(r) and P1 (dr) are independent for all rand that all P1 (r) have equal 
distributions. Equation (20) expresses that the randomness of growth is related to 
consumption and to fasting catabolism, and that the relative variation of these two 
physiological processes remain constant. Assume Pi ( r) to be a Poisson process in 
continuous state space i.e. Pi is a process with events occuring singly in time: 

P{Pi ( r + dr) =Pi ( r)} = exp (- Aidr) = 1 - Aidr . i = 1,2. 

and if an event occurs it is assumed to be normally distributed (0, Ct) 
P{a~ Pt(r+dr) <a+daiP1 (r) = b} = 

I 
( 1- Atdr) 

= 1 a2 

A,d~exp t 2,) da 

if a= b 

if a =I= b 
.i = 1,2. 

Events may be considered as impulses which the fish receives from time to time e.g. 
the sight of a prey, the sight of a species member, an attack of a parasite, a change in 
the water quality or the temperature etc. etc. Pt( d r) accounts for all events which 
may result in deviation from the expected growth, and d r accounts for the expected 
growth. Let P' be normally distributed (O,Ct). Then 

E(!J.Pt) 2 = VAR(/J.Pt) = VAR((number of events) P') ~ At!J.rCt (21) 
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and 

E(~~)2 = H2 E(w(r) 2mp.1C1~r 

if ~r is small. E(w(r)2m) is an ordinary Riemann integrable function so the limit 

lim 'i:H2 A1 (1 E(w(s1 ) 2m)~1 r 
n---+ro j = 1 

exists. 
The question is whether we can accept this process as a reasonable model of growth .. 

The process is a Markov process, which is not in accordance with our intuitive 
picture of the growth process. The Markov assumption implies that two fish of equal 
weight at a given time have equal growth characteristic irrespective of how they 
have obtained their present weight. This is formally stated as 

P{w( rn) ~ Wn I w( rt) = W1, w( r2) = W2, ... , w( Tn-d = Wn-1} = 

P{w( tn) = Wn I w( tn-d = Wn-1} if 7:1 < 7:2 < ... < tn-1 < tn 

In certain extreme situations this is obviously not fulfilled. Consider two fishes, 
a and b, with growth curves wa(r) and wb(r) resp. as shown in Figure 1. Assume that 
the two fishes were offered exactly the same conditions i.e. food rations, water 
quality etc. Fish a has starved down to weight w1 and fish b has fed up to weight w1 

in the time period from To to 1:1. Assume that the time period is long enough to put 
fish a in a bad condition. In our opinion it is not reasonable to expect the same growth 
characteristics of the two fishes in the period subsequent to r 1 • Based on a naive 
consideration the expected growth curves would be as indicated with dotted lines 
in Figure 1. 

weight 

.__ ____ ---...JL......... ___ time 

Fig. l. Hypothetical growth curves to illustrate the Markov-assumption. 

This idea could formally be expressed: 

E{dPt ( r) IPt(u); u < r} = (1' dt exp( -rtu) ~ (du~ dr, i = 1,2. (22) 

where dt > 0 and rt > 0 are constants. 

Recall that ~ (du) is interpreted as the response from the fish to some impulses 
received in the period [ u, u + du]. S ~ ( du) is the sum of these responses to impulses. 
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If the fish mainly responds positively on the impulses this increases the probability 
that the response on the next impulse will be positive (positive responses means that 
~ (du) > 0). rt > 0 means that positive responses to impulses received in the near 
past count more than those of the farther past. 

A process satisfying (22) instead of E(Pt (dr)) = 0, is not a Markov process and 
consequently not a process with independent increment. 

Thus, we are in the bad position that we want to perform the integration (16) and 
we want to assume that (22) is va)id, and we have realized that these two assumptions 
together are an absurdity. ,We are unable to solve this problem. Only on account of 
convenience we may assume that the integral ( 16) exists, and that the processes P1 

and P2 have independent increments. 
To visualize the difference between the two types of growth processes (which we 

denote Markov process and non-Markov process) some computer simulation were 
carried out. 

Both simulations deal with a stock of 100 fish and a growth period of 27 days. 
The initial weights are uniformly distributed between 25 g and 26 g, i.e. with a mean 
weight of 25.5 g and a relative standard deviation of 1.13%. The parameters ( ' 1 and 
' 2 in the Markov process and ' 1 , ' 2 , d1 , d2 , r1 and r2 in the non-Markov process) are 
calibrated so that the final weight distribution in both simulations has a mean of 
44.4 g and a relative standard deviation of 6.2 %. The reason for this specific choice 
of initial and final weight distribution is that such values have been observed in a 
pond experiment (Sparre, 1976). Thus, it appears that both models are able to 
provide results which are in accordance with observations. In Fig. 2a and b four 
computer simulated realizations of each process are shown. 

In our opinion it is not obvious from these simulations which type is closest to our 
intuitive and naive picture of the growth process. And, after all, the problem is not 
whether "the truth" of growth processes shall be found in the Markov process or in 
the non-Markov process, but whether the model applied is a reliable approximation. 

Concerning the realiability of the Markov assumption it can finally be mentioned 
that this assumption is in accordance with ,Winberg (1956) who says: "the metabolic 
rate of a fish in the course of its individual development changes, in general, only to 
the degree which corresponds to its increase in size and weight. In other words, age 
(as such) has no influence on metabolic rate", and with Larkin, Terpenning and Parker 
(1956) who suggest on basis of their investigations that growth rate ofrainbow trout 
should be related to size independent of age. 

We have not considered the genetical differences that probably exist between the 
individuals of the rainbow trout stock used in the experiments because we think that 
these differences are of minor importance in relation to the other factors. 
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6. THE FORMAL BASIS OF THE EXPERIMENTAL DESIGN 

The starting point is formula (20) and the assumption that P1 ( r) and P2 ( r) are 
processes with independent increments and EP1 = EP2 = 0 for all r. 

All Pt( r) are assumed to have the same distribution, and the variance of !1Pt is 
assumed to be proportional to !1 r, i = 1 ,2. 

Then 

w(r+!1r) -w(r) =-1-fr+M(Hw(u)m -kw(ut)du+ 
!1r !1r r 

Assume that w ( r) m and w ( r) n are approximately linear in the time period [ r, r + !1 r] . 
Then 

!1wf !1 r = Hiir- kwn + Hwm !1P1 / !1 r- kwn !1P2 / !1 r 

Let e1 = 1 + !1P1 / !1 r and e2 = 1 + !1P2 / !1 r. Then 

!1wf !1 r = Hwm e1 - kwn e2 

It is seen that Ee1 = Ee2 = 1 and that (cf. 21) 

1 
V AR ( eJ = !1 T At C i, i = 1 , 2. 

Introducing the feeding level: 

And from (2) and ( 4) 

!1wf!1r = B(l-Af)fhwmel -kwne2 

( !1Rj !1 T )max = hwm E1 

(!1w/!1r)rasting = -kWnE2 

(23) 

(24) 

(25) 

The three equations (23), (24) and (25) form the basis of the experiments. The 
parameters to be estimated are A, B, h, k, m and n, and the observations are !1wf!1r, 
(!1R/!1r)max, (!1w/!1r)rasting and w. 

7. THE INFLUENCE OF THE ENVIRONMENTAL CONDITIONS 

So far we have dealt only with what is going on inside the trout. This section deals 
however, with the relation of the inner processes and the environments. Examples 
of environmental factors are temperature, variation in temperature, oxygen con­
centration, density of fishes, food quality, pH, etc. Let E be the environment vector 
E = (E1 , E2 , ••• ) , where each Et represents an environmental factor. Inserting E the 
growth equation becomes 

(26) 

·At the present stage of the development, only two environmental factors are con­
sidered, namely temperature and density of fishes. This does not imply that we 
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consider these as the only important ones, but that our resources are too scanty to 
support investigations of other factors. Consequently, other environmental factors 
are assumed to remain constant. In this work E reduces toE= (t,u), where t is the 
temperature and u is a (0, 1 )-variable. u = 0 indicates that only one trout is used in 
the experiment and u = 1 indicates that more than one trout are used. 

The temperature dependence is introduced as follows: 

A(t) =A (constant) 

B(t) = B (constant) 

h(t) = h1 exp(h2 t) 

k(t) = k1 exp(k2 t) 

(27 .1) 

(27.2) 

(27.3) 

(27.4) 

Due to ,Warren and Davis (1967) it could be expected that optimal temperatures 
of A and B existed, i.e. temperatures which minimize A and maximize B. However, 
from experiments we have the impression that the temperature dependence of A and 
B are of minor importance (no statistical significant differences were observed). 
27.1 and 27.2 are to be considered as the simplest reasonable approximations. 

The expressions of hand k are valid only in a limited temperature interval. Obviously 
: the temperature dependence of !).wj!).r should be a curve with a maximum as shown 

by Brett et al. ( 1969). However, in the temperature interval applied to these experi­
ments the exponential curves fit well. For most practical purposes (i.e. in the case of 
Danish fish farming) the temperature varies from 0°-20° C and within this interval 
the exponential curve is considered as a reasonable approximation. (For a discussion 
of temperature dependence of growth see e.g. Ursin (1967), Brett et al. (1969) and 
Elliot ( 1975 a and b)). 

Let N be the number of fish in the aquarium and let 

(N) = { 1 if N > 1 
u 0 if N = 1 

and s(N) = 1 - u (N). The density dependence of growth is introduced as: 

h1 (N) = u(N)h~' +s(N)h~ and k1 (N) = u(N)k~' +s(N)k~ (28) 

where h~', h~, k~' and k~ are constants. 
Thus, one fish alone in an aquarium is assumed to behave different from another 

fish which is in company with one or more other fish. This model is due to the fact 
that such an effect was observed in the case offasting catabolism. Again, the expres­

. sions (28) are to be considered as the simplest imperical models which take into 
account the experimental facts. 

8. THE GROWTH EQUATION 

Inserting (27) and (28) into (26) the growth equation gets its final form 

~~ = B(1-Af)f(u(N)h~' +s(N)h~)exp(h2 t)wmc1 
- (u(N)k~' +s(N) k~) exp(k2 t)wnc2 (29) 
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Ll r: time in days. Ll r = r2 - r 1 where r 1 =starting time and r2 =end time of 
the experimental period. 

t: temperature in degrees Celsius. 
f: feeding level (pure number). t andfare assumed to remain constant during 

the Ll r days. 
A, B: (pure numbers). Three possible interpretations of A and B are given in 

section 4. 
Llw: weight alteration in grammes. Llw = w( r2) - w( rt). 

w: mean weight in grammes. w = (w(r1 ) +w(r2))/2. 
n: catabolism exponent (pure number). 
m: anabolism exponent (pure number). 

N: the number of trout in the aquarium. N remains constant within each 
experiment. 

u: u(N) = 1 if N> 1 and u(N) = 0 if N = 1. (pure number). 
s: s(N) = 1 -u(N). (pure number). 
h~',h~,h2 : (u(N)h~'+s(N)h~)exp(h2 t) anabolism coefficient. (h~' andh~ g1-m/qayand 

h2 degrees c-l) 0 

k~',k~,k2 : (u(N)k~' +s(N)kn exp (k2 t) catabolism coefficient. (k~' and k~ g1-n/day and 
k2 degrees c-l) 0 

c1 , c2: stochastic terms. Ec1 = Ec2 = 1. (pure numbers). 

9. MATERIAL AND METHODS 

As the Danish trout farm production is based on 10-16 months old rainbow trout 
(Salmo gairdneri) (portion size, 180-250 g) only immature trout were used in the 
experiments. 

The experiments were carried out in ten 100 liters steel aquaria, supplied with 
water from a brook. Before entering the aquaria the water first passed through a 
wood-wool filter and then through a sand and gravel filter. The filtering was done in 
order to remove prey from the water to avoid an unregistered food intake. After the 
filtering the water was led into a 500 liter fibre glass bassin where heating, cooling 
and aeration with atmospheric air took place. The level of dissolved oxygen was 
between 90% and 100% of air saturation (measured at inlet and outlet of the aquaria). 
From the bassin the water were pumped up into the aquaria and from there it ran 
back to the brook. The water flow through the aquaria was from 1.5 to 2 1/min. 

Before the start of an experiment the trout were acclimated to the experimental 
temperature for at least one week. Only weight (not age) was registered. However, 
to make it probable that only immature trout were used all animals were less that 
18 months old. 

The aquaria room was lit-up for 12 hours and dark for 12 hours. Before weighing, 
each trout was anesthetized with chlorbutolum, and blotted using a wet cloth. 

A determination of the parameters consists of three experiments: 

I. Determination of h~', h~, h2 and m. 

I I. Determination of k~', k~, k2 and n. 

Ill. Determination of A and B. 
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9. 1 ExPERIMENT I. MAXIMUM FEEDING 

Experiment I is based on (24) 

~~)max = h (N, t) wm El = (u (N) h~' + s(N) hn exp (h2t) wm El 

or by taking logarithms 

289 

log ~i~)max =log (u(N)h~'+s(N)hn +h2t+mlogw+logE1 (30) 

The following indices are used: 

j: index of temperature 
v: index of N (one or many) 
i: index of aquarium 

Let 

]v =the number of different temperatures considered at density v. 
NvtJ =the number oftrout in aquarium i at temperature no.j and density v. 

(Nu1 = 1 and N2ii > 1). 
tv1 =temperature at experiment) at density v. 

ZvtJ =log (~~)max =log max rate of feeding at density v, in aquarium i and temper­

ature tv1• If v = 2, 6.Rf 6. r is the mean value N'U~ ~ (~~)max of the N 2t1 trout. 

Mv1 =the number of aquaria used at temperature tv1 at density v. 

Wvii =log w =log mean weight at density v in aquarium i at temperature tvi· If 
v = 2, w is the mean value N 2i} ~w of the N 2 t1 trout. 

6.vt1 =log E1- E(log E1). 

Then (30) can be rewritten 

Zvij = (log[ u (Nvij) h~' + s(Nvij) h~] + E(log El)) + h2tvj +m Wvij + 6.vij (31) 

V= 1,2. j = 1,2, ... , ]v· i = 1,2, ... , Mvj· 
As E6.vt1 = 0 an ordinary linear regression model can be applied to (31). The 

design matrix, the procedure of estimation and the tests are discussed in the Appendix. 
The following measurements were performed: 

6. ivtj: 

6.Rvij: 

growth period (Starting time = 0) 
food ration 

tv1 : temperature 

Wvti (0) : initial weight 
WvtJ ( 6. r) : final weight 
Nvii : n urn ber of trout 

V = 1, 2. j = 1, 2, ... , ]v. i = 1, 2, ... , Mvj. 

All trout used in the experiments were in good condition, i.e. well fed and free of 
diseases. Immediately before the start of the experiment the trout were starved, so 
that the weight Wvii (0) is the weight of a fish with empty stomach and gut. 
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As food fresh sprat (Sprattus sprattus) and various sand eels (Ammodytes sensu latiore) 
were used. These species are among the most commonly used food fish in Danish 
trout farms. The food fishes were cut into pieces of suitable size so that they could 
easily be swallowed by the trout. The trout have been offered food approximately 
every hour during the 12 hours when light was on in the aquaria room. At every 
feeding the trout were offered pieces of food until they refused twice to eat. The food 
not eaten was picked up again. The trout ate two to four times a day at a temperature 
of about go C and four to six times a day at a temperature of about 16° C. 

At the end of the growth period the trout were starved so that WvtJ(Llr) was the 
weight of a trout with empty stomach and gut. The time elapsing before this emptying 
had taken place was approximately 65 hours at go C and 35 hours at 16° C. As it is 
rather difficult to make a precise estimate of the minimum time needed by the trout 
to empty its stomach and gut, we had the possibilities of weighing with a certain 
residual stomach and gut content or of weighing the trout after the stomach and gut 
were emptied and after a certain time of fasting catabolism. The last mentioned pos­
sibility was chosen, i.e. the weight was measured after a few hours of fasting catabolism. 
Anyhow, the error introduced is negligible compared to other sources ofuncertainty. 

The choice of the number of days ~ r is problematic. If ~ r is large it ·is more 
likely that ~wf ~ r will take a value we can accept as a fair estimate of the mean 
differential coefficient E{w(~r/2)}. (The differential coefficient is defined as the 
stochastic variable w(u) satisfying lim E{i(w(u +du) -w(u))fdu -w(u)i 2

} = 0). On 
du---+0 r~· 

the other hand, the approximation wn~T = Jo w(u)ndu is expected to be more 

inaccurate as ~ r grows. So far it has been impossible to assess the remainder terms 
in the approximations, since this implies a thorough knowledge of the stochastic growth 
process. 

In the case v = 2, the N 2 ii trout were selected to obtain fishes of approximately 
equal initial weight. 

9.2 ExPERIMENT II. FASTING CATABOLISM 

This experiment is based on (25) 

(~~)fasting = -k(N, t) wn e2 = - (u (N)k~' + s(N)k~) exp (k2t) wn e2 

From a mathematical point of view this model is equivalent to the model of(~R/~r)max 
described in the foregoing section. Except that no feeding took place the experimental 
design is identical to that of experiment I. In this case another difficulty in the choice 
of~ r arises, which is due to the fact that fish starving for a longer period will change 
their chemical composition considerably (cf. Brett et. al., 1969). 

9.3 ExPERIMENT Ill. DETERMINATION OF A AND B. FEEDING LEVEL EXPERIMENT. 

This experiment is baseed on (23) 

(~~)! = B(1-Af)fhwmel -kwne2 

Inserting (24) and (25) gives 

(t:,.w\ +kwn = B(l-Aj) rP:R) -kwn(e2 -1)= B(~R) -BA(f(t:,.R)) +ea (32) 
\t:,. T )! \L\ T f t!,. T f L\ T f 

where ea= -kwn(e2 -1). 
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In this experiment only the case v = 1 is considered, i.e. the density dependence 
of A and B is not tested. Even if A and Bare assumed to be temperature independent 
the experiment was performed at different temperatures in order to test this hypo­
thesis. 

Since we want to measure (D.wfD.r) 1 as a function off (or D.R/D.r), experiment 
Ill has to be more complicated than I and 11. This implies that w must be kept 
constant for several trout eating at different feeding levels. The reason for this is 
that when w is a constant, B and BA can be estimated as _ordinary linear regression, 
coefficients. Assume that k and n are known parameters (known from experiment 11). 
Then kwn can be considered as a constant. Let 

~i = (D.w/ D. r) + kwn =net production rate of trout i (or aquarium i) at temperature ti. 
D 1ii = (D.R/ D. r) =ration per time unit of trout i at temperature ti. 

D2ii = f(D.Rf D. r) = (feeding level) X (ration per time unit) 

Let f.1 1 i =Band f.1 2i. = -AB. Then (32) may be rewritten 

Jji = f.lljDlij + f.12jD2ij + C3 (33) 

As Ec3 = 0 (33) is a linear regression model for each temperature ti. Having estimated 
f.11i and f.12i for various temperatures and having tested the temperature independence 
of f.11 and f.1,2, a pooled estimate of f.11 and f.12 can be obtained by reducing (33) to 

~ = f.11 Du + f.12 D2i + c3 (34) 

The statistical aspects are discussed in the Appendix. 
Now the only problem left is how to keep w constant. Consider an experiment at 

constant temperature and let the number of trout be M. Let the subscripts be chosen 
so that 

w1 (0) > w2 (0) >, ... , > wM (0) 

and let the corresponding feeding levels be .h, .h., ... , JM .. We want to determine J. so 
that 

(wdO) + Wt (J., D. r)) /2 = w (constant) for all i. 

Obviously .h <.h.<, ... , <JM, but a numerical estimate ofJ. can only be obtained if 
you know the growth parameters, and this is why experiment Ill is problematic. 
Assume that the parameters h;, h2 , m, k~, k2 and n are known from experiment I 
and 11 and that "guesstimates" of A and Bare present. Then a guesstimate of~ can be 
obtained by solving the equation dwddr = B(l -AJ.)J.hw"t -kwr with respect toJ.. 
That means that you determine J. so that the solution of the differential equation 
pass through the two points (0, Wt (0)) and (D. r, 2w- wi (0)). If m =f= n some numerical 
method must be applied, if m = n the solution is 

Wt(D.r) = {wi(0) 1 -n + (1-n)[B(l-Aft)fth-k]D.rF 1<
1 -n) 

From D.Rt = J.hwm D. r the food ration is estimated. 
The first time when experiment Ill is carried out very rough estimates of A and B 

must be used, but the next time you run the experiment estimates of A and B will be 
available, and every time a new replicate experiment is performed the estimates of 
A and B will be improved. 

The following measurements were performed: 

D. rii: growth period (starting time = 0) 
D.Rii: food ration 
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tj : temperature 

Wij (0) : initial weight 

wij(~r): final weight 

J= 1,2, ... ,]. i = 1, 2, ... , Mj. 

The experimental procedure is as in experiment I, except that only one trout is offered 
maximum feeding level at each temperature. The reason why only a single trout is 
used is that feeding of several trout in one aquarium at an approximately equal feeding 
level less that 1.0 is very difficult. 

10. RESULTS 

10.1 ExPERIMENT I. h; , h;', h2 AND m 
The direct observations are given in Table 1.1. 

Indices Number Temp. Time Initial Final Total 
weight weight ration 

j Nvij fvj ,1 Tvij Wvij(O} Wvij (,1 r) RviJ(,1r) 

I 1 3.5 14.2 67.6 77.3 27.4 
I 2 3.5 14.2 177.1 196.3 47.2 
I 3 3.5 14.2 277.4 302.4 71.7 

2 1 5.7 19.4 16.1 23.1 20.3 
2 2 5.7 26.0 42.0 59.8 48.5 
2 3 5.7 26.0 57.0 89.7 87.9 
2 4 5.7 26.0 82.6 119.4 94.4 
2 5 5.7 26.0 117.5 169.5 120.5 

3 1 7.6 7.3 62.3 72.0 27.2 
3 2 7.6 7.3 101.8 115.6 32.7 
3 3 7.6 7.3 161.6 188.7 65.2 
3 4 7.6 7.3 266.2 298.4 83.8 

1 4 1 10.0 17.0 21.4 35.8 37.1 
1 4 2 10.0 15.2 80.4 119.3 95.7 
1 4 3 10.0 15.2 132.3 193.2 146.0 
1 4 4 10.0 17.0 164.3 244.8 171.8 

1 5 1 14.5 15.0 43.4 86.9 112.0 
1 5 2 14.5 15.0 87.8 147.0 152.3 
1 5 3 14.5 15.0 96.2 164.9 178.6 
1 5 4 14.5 15.0 132.4 233.2 236.8 
1 5 5 14.5 15.0 202.2 323.5 320.0 
1 5 6 14.5 15.0 251.0 379.9 370.9 

1 6 1 16.0 9.0 32.8 43.1 38.7 
1 6 2 16.0 9.0 112.9 158.4 138.4 
1 6 3 16.0 9.0 194.3 256.5 200.5 
1 6 4 16.0 9.0 209.6 270.6 205.3 
1 6 5 16.0 9.0 211.5 279.5 210.3 
1 6 6 16.0 9.0 242.9 311.8 195.9 

2 1 1 8 3.5 8.0 91.6 97.2 17.5 
2 1 2 2 3.5 14.2 98.0 109.6 32.9 
2 1 3 2 3.5 14.2 147.8 167.9 51.8 

2 2 1 3 7.6 7.3 99.5 111.2 30.4 
2 2 2 2 7.6 7.3 144.4 163.6 48.4 
2 2 3 2 7.6 7.3 253.5 278.0 70.2 

2 3 1 19 16.0 9.0 31.9 42.9 39.4 
2 3 2 3 16.0 9.0 104.6 140.1 111.2 

Table 1.1. 
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Using the procedure of calculations described in the Appendix, the following 
estimates were obtained: 

h' I 
h;' 
h2 
m 

Estimate 

.0385 

.0339 

.ll6 
.837 

Table 1.2. 

95 % confidence interval 

.0290-.0509 

.0263- .043 7 

.109 -.122 

. 786 -.887 

The standard deviations and the correlation coefficients are given in Table 1.3. 

log(h;) 

log(h;) .14 log(h;') 

log(h"I) .97 .13 h2 

h2 -.54 -.57 .0033 m 

m -.96 -.95 -.34 .025 

Table 1.3. 

Residual e~tor variance a2 = .13 and the multiple correlation coefficient e = .99. 
The correlation between observed and calculated values of v'N log ( D...RJ D. T )max is 
shown in Figure 3 . ....;Ji log (D...RJD...r) is chosen because the linear regression analysis 
was carried out on these figures (cf. Appendix). 

Let H designate hypothesis and let F(H, a, b) represents the Fisher distribution on 
a, b degrees of freedom. If F(H, a, b) is less than the 95 percent fractile, the hypothesis 
His accepted. Two hypotheses were tested: 

H1: m independent of temperature. 
H2: log(h~) = log(h~'). (density independence). 

H1 : Two values m1 and m2 of the anabolism exponent were considered. The estima­
tion of m1 was based on observations at temperatures less than or equal to 10° C and 
m2 was estimated from observations taken at temperatures greater than 10° C. 
Formally Hl is stated as m1 =m2 • The actual values are m1 = .847 and m2 = .825. 
The F -statistic is F(H1, 1, 32) = 1.45, so H1 is accepted. 
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2 3 4 5 6 

Fig. 3. Correlation between observed and calculated values in the linear regression analysis 
applied to the maximum feeding experiments. 

H2: The F-statistic is F(H2, 1, 33) = 12.2 which corresponds to the 99.9% fracti1e, 
so H2 is not accepted. 

The calculations of the F-statistics are described in the Appendix. 

10.2 ExPERIMENT 11. k;, k;', k2 AND n 
The direct observations are given in Table 1.2. 
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Indices Number Temp. Time Initial weight Final weight 

j i Nvij lvj j. Tvij Wvij(O) Wvii(~r) 

1 1 1 3.7 28.7 69.8 67.6 
1 2 1 3.7 28.7 110.9 107.2 
1 3 1 3.7 28.7 181.1 177.1 
1 4 1 3.7 28.7 286.0 277.4 
1 5 1 3. 7 28.7 289.9 283.9 

2 1 1 5.7 31.2 22.5 21.7 
2 2 1 5.7 31.2 42.1 40.8 
2 3 1 5.7 31.2 66.9 65.8 
2 4 1 5.7 31.2 74.1 72.3 
2 5 1 5.7 31.2 300.5 291.7 
2 6 1 5.7 31.2 320.2 315.6 

3 1 1 6.8 21.0 5.2 5.1 
3 2 1 6.8 21.0 7.9 7.6 
3 3 1 6.8 21.0 12.1 12.0 
3 4 .1 6.8 21.0 24.0 22.0 
3 5 1 6.8 21.0 38.0 36.5 
3 6 1 6.8 21.0 79.7 74.8 
3 7 1 6.8 21.0 112.7 109.2 
3 8 1 6.8 21.0 135.8 134.3 
3 9 1 6.8 21.0 166.1 160.5 
3 10 1 6.8 21.0 409.2 404.8 

4 1 1 7.8 12.0 23.4 22.5 
4 2 1 7.8 12.0 43.3 42.1 
4 3 1 7.8 12.0 68.6 66.9 
4 4 1 7.8 12.0 76.6 74.1 
4 5 1 7.8 12.0 305.2 300.5 
4 6 1 7.8 12.0 326.9 320.2 
5 1 1 8.1 18.0 13.8 13.4 
5 2 1 8.1 18.0 42.6 40.0 
5 3 1 8.1 18.0 58.0 53.7 
5 4 1 8.1 18.0 75.3 72.3 
5 5 1 8.1 18.0 165.2 162.2 

6 1 1 8.7 20.0 5.1 4.7 
6 2 1 8.7 20.0 9.7 8.9 

.6 3 1 8.7 20.0 14.3 12.0 
6 4 1 8. 7 20.0 19.1 16.5 
6 5 1 8.7 20.0 51.2 48.0 
6 6 1 8.7 20.0 72.4 67.0 
6 7 1 8.7 20.0 100.1 92.6 
6 8 1 8.7 20.0 123.1 120.2 
6 9 1 8.7 20.0 286.2 282.5 

7 1 1 10.0 20.9 24.7 22.9 
7 2 1 10.0 20.9 44.8 42.7 
7 3 1 10.0 20.9 72.6 70.9 
7 4 1 10.0 20.9 78.2 75.8 
7 5 1 10.0 9.1 99.7 97.2 
7 6 1 10.0 9.1 100.0 97.5 
7 7 1 10.0 20.9 306.5 298.7 
7 8 1 10.0 20.9 327.6 312.4 

8 1 1 12.0 14.0 16.4 15.2 
8 2 1 12.0 13.0 58.5 56.8 
8 3 1 12.0 13.0 93.5 91.0 
8 4 1 12.0 14.0 182.8 171.0 
8 5 1 12.0 14.0 225.4 218.2 

Table 1.2. (cont. on next page). 
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(continued) 

Indices Number Temp. Time Initial weight Final weight 

j Nvij lvJ Ll Tvtj Wvt;(O) Wvi;(L:lr) 

9 l l 13.5 14.0 56.3 54.4 
9 2 l 13.5 14.0 60.3 57.1 
9 3 1 13.5 14.0 60.6 57.8 
9 4 1 13.5 14.0 61.0 58.1 
9 5 1 13.5 14 0 61.0 58.5 
9 6 1 13.5 14.0 63.6 61.3 
9 7 1 13.5 14.0 63.7 61.7 
9 8 1 13.5 14.0 64.6 61.4 
9 9 1 13.5 14.0 68.2 66.0 

1 10 1 1 20.4 4.5 14.8 14.3 
1 10 2 1 20.4 4.6 44.1 43.0 
1 10 3 1 20.4 4.6 74.1 72.7 
1 10 4 1 20.4 4.6 181.3 178.9 
1 10 5 1 20.4 4.6 245.7 236.8 

2 1 1 3 3.7 28.7 106.6 101.2 
2 1 2 2 3.7 28.7 153.2 147.8 

2 2 1 100 8.1 18.0 13.8 12.7 
2 2 2 35 8.1 18.0 42.6 . 40.7 
2 2 3 27 8.1 18.0 58.0 54.7 
2 2 4 22 8.1 18.0 75.3 71.6 
2 2 5 10 8.1 18.0 165.2 158.0 

2 3 1 20 12.0 13.0 57.6 55.0 
2 3 2 15 12.0 13.0 93.5 88.7 
2 3 3 9 12.0 14.0 185.2 176.7 
2 3 4 7 12.0 14.0 227.1 218.8 

2 4 1 8 13.5 14.0 60.0 54.5 

2 5 1 82 20.4 4.6 12.5 11.7 
2 5 2 23 20.4 4.6 42.4 39.9 
2 5 3 18 20.4 4.6 74.4 70.9 
2 5 4 5 20.4 4.5 246.2 238.5 

Table 1.2. 

The procedure of estimation and testing is identical to that of the foregoing section. 
The following estimates were obtained: 

Estimate 

.00207 

.00330 

.101 

.740 

Table 2.2. 

95% confidence interval 

.00155-.00277 

.00258- .00421 

.091 -.110 

.685 -. 794 

The standard deviations and the correlation coefficients are: 

log(k;) 

log(k{) .15 log(k{') 

log(k;') .86 .12 k2 

k2 -.43 -.61 .0048 

n -.84 -.84 .15 

Table 2.3. 

Residual error variance a2 = .30 and multiple corr. coeff. e = .99. 

n 

.027 
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The correlation between observed and calculated values of log ((Llw/Llr)rasting) VN 
is shown in Figure 4. 

12t {tJ.w) IV calculated -log\. j. T fasting V N 

cal. 
11 

10 

• 
9 

8 

6 

5 

4 

3 

2 

0 

(~l~ IV 
observed -log ~}fastingV N 

-1 2 3 4 5 6 8 

Fig. 4. Correlation between observed and calculated values in the linear regression analysis applied to 
the fasting catabolism experiments. 
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Two hypotheses were tested: 

H1: n independent of temperature. 

H2 : log ( k~) = log ( k~') (density independence). 

The values of n were equal in the two cases t > 1 oo C and t ~ 1 oo C, so H1 is accepted. 
The F-statistic for H2 is F(H2, 1, 80) = 38.3 which corresponds to the 99.99% fractile, 
so H2 is not accepted. 

10.3 ExPERIMENT Ill. A AND B. FEEDING LEVEL ExPERIMENT. 

The direct observations are given in Table 3.1. 

Initial Final Total 
Feeding 

Indices Temp. Time 
weight weight ration 

level= 
iiJ 

J i tj tl.rij wi1 (0) wi1 (tl.r) tl.Rij 
tl.Rii 
tl.Ru 

I I 5.7 26.0 57.0 89.7 87.9 1.00 73.4 
1 2 5.7 26.0 63.1 89.0 52.8 .60 76.1 
1 3 5.7 26.0 66.9 86.8 39.4 .45 76.9 
1 4 5.7 26.0 68.9 85.6 32.4 .37 77.3 
1 5 5.7 26.0 74.3 78.0 13.5 .15 76.2 
1 6 5.7 26.0 75.8 73.4 8.1 .09 74.6 

2 1 10.0 15.2 80.4 119.3 95.7 1.00 99.9 
2 2 10.0 15.2 82.5 116.4 69.1 .72 99.5 
2 3 10.0 15.2 88.6 108.1 38.8 .41 98.4 
2 4 10.0 15.2 92.7 102.2 25.6 .27 97.5 
2 5 10.0 15.2 95.5 100.0 19.2 .20 97.8 
2 6 10.0 15.2 98.0 100.5 10.5 .11 99.3 
3 1 14.5 15.0 87.8 147.0 152.3 1.00 117.4 
3 2 14.5 15.0 90.8 145.1 129.6 .86 118.0 
3 3 14.5 15.1 92.1 145.9 118.7 .78 119.0 
3 4 14.5 15.1 109.3 121.8 42.3 .28 115.6 
3 5 14.5 15.0 114.3 121.9 27.6 .18 118.1 

Table 3.1. 

The initial estimation is based on (33), i.e. to each temperature a pair of para­
meters (cx1 j, cx2i) = (Bi,(AB)i),j = 1,2,3 are calculated (as described in the Appen­
dix). The results are: 

Temp. Parameter Estimate 95 % confidence interval 

A! .414 .052- 1.203 *" 
5.7 f.lu = B1 0 718 .469- .968 

A2 .283 .052- .659 *" 
10.0 f.112 = B2 .646 .503- .789 

A3 .219 .027- .530 * 
14.5 f.113 = B3 .580 .460- .670 

5.7 f.121 =-(AB)! .297 -.003- .598 
10.0 f.122 =-(AB)2 .183 .015- .351 
14.5 f.123 = -(AB)s .127 -.009- .263 

* Fiducial limits (see Appendix). 
Table 3.2. 
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The relative standard deviation and the correlation coefficients are: 

Bt 

B1 15.8% -(AB)t 

-(AB)t .94 46.0% B2 

B2 0 0 10.0% 

-(ABh 0 0 .95 

B3 0 0 0 0 9.4% 

-(ABh 0 0 0 0 .98 

Table 3.3. 

The hypothesis of temperature independence of A and B is stated as: 

H3: flu = /112 = /113 and /121 = /122 = /123 • 

The F-statistic is F(H3, 4, 11) = .53 so H3 is accepted. 
Under H3 estimates of f11 and f12 , based on (34) are calculated 

B 
A 

-AB 

Estimate 

.621 

.273 

.170 

1*) Fiducial limits (see App.) 
Table 3.4. 

95 % confidence interval 

.543-.699 

.130- .461 1*) 

.080-.259 

Relative standard deviations and the correlation coefficient are: 

B 5.9% -AB 

-AB .98 24.7% 

Table 3.5. 

299 

-(ABh 

48.5% 
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The correlation between observed and calculated values are shown in Fig. 5. 

4 

3 

2 

Llw x; + kwn observed 

2 3 4 5 6 

Fig. 5. Correlation between observed and calculated values in the linear regression analysis applied to 
the feeding level experiments. 

10.4 EXAMPLES OF GROWTH CURVES 

Assume that the growth process is differentiable at every time r Le. assume that 
for every r there exists a random variable w( r) so that 

lim {El w(r+~r) -w(r) -zh(r)l2} = 0 
~r~O ~i 

Assume further that for all r 

Ew(r) = B(l-Af)fh(Ew(r))m -k(Ew(r))n 

i.e. it is assumed that E(wm) = (Ew)m and E(wn) = (Ew)n. To assess the reasonable­
ness of these approximations, we need to state the distributional properties of w( r) 
given w(O). From pond experiments it is known that w( r) given w(O) is approximately 
log normally distributed for large values of r. For relatively small values of r, w( r) 
can be approximated by a normal distribution. No direct aqaria observations are 
available. Let us assume that w( r) is log normally distributed, then w( r)m is also log 
normally distributed with 

Ewm = (Ew)m exp ((m2 -m) VAR (logw)/2) 
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If we approximate m and n by .8 we get Ewm = (Ew)m exp( -.08 VAR (log w)). · 
Depending on r, V AR (logw) varies from 0 to at most .5, when r varies from 0 to 
12 months, (no direct aquaria observations are available) and the error factor exp 
(- .08 VAR (log w)) varies from 1.0 to .96. 
Then the mean growth curve W( r) = Ew( r) is the solution of the ordinary differential 
equation dWjdr = B(l -Aj)jhW(r)m -kW(r)n 

Inserting the estimates the differential equation becomes 

dWjdr = .62(1-.27f)f(u(N).034+s(N).039)exp(.116t)W(r)·84 

-(u(N) .0033 +s(.N) .0021)exp(.l01t) W(r)· 74 

(35) 

(36) 

In Fig. 6 solutions of (S6) are shown corresponding to various values of J, Nand t. 
J, Nand t remain constant for every single mean growth curve in Fig. 6. 

11. DISCUSSION 

The experimental design is based on a rather speculative model, a certain type of 
an autoregressive scheme. This model was constructed to allow for application of a 
linear approach to the procedure af parameter estimation. The model was developed 
primaryly to fulfill our desire of a consistent mathematical model, from which the 
experiments could be designed. It turned out that we were forced to make certain 
non-evident assumptions on growth in order to obtain both a consistent mathematical 
model and an experimentally applicable model. It is possible to test the assumption 
of independent weight increment by experiment, but to our knowledge no such 
experiments have been carried out. 

The mathematical problems involved in a description of growth appeared to be 
of a rather profound nature, and in this paper it has been given only a very superficial 
and incomplete treatment. Unfortunately we are unable to give references to papers 
discussing the physiological growth equation from a mathematical point of view, 
and we do not feel capable to go any deeper into the investigation of the mathematical 
problems. On the other hand we feel that the randomness of growth is so dominating 
that growth cannot be described in a reasonable way by means of a deterministic 
model. Further in the case of average growth of a great number of fish it is necessary 
to specify the underlying state space, if you want to estimate the parameters from 
single realizations. 

To us, from a naive point of view, it seems unreasonable to describe an extremely 
complicated process as growth by aid of a simple mathematical equation as e.g. the 
von Bertalanffy equation. 

Another open question is how to perform an objective measurement of the feeding 
level, i.e. a method which is independent of who actually performs the feeding ex­
periments. ,We have no guaranty that the values of(~R/~ r)max obtained in the pre­
sent work represent the actual maximum food intake of each individual. The defini­
tion ofjin the case of many trout in one aquarium is problematic (cf. Sparre, 1976). 
In the present work it is assumed that no food competition takes place in the case of 
maximum feeding, so that feeding level1 means that each specimen eats the maximum 
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Fig. 6. Hypotehtical mean growth curves. (Solutions of equation (36)). 
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ration per time unit. In our opinion it is nearly impossible to feed several trout in one 
aquarium so that every trout gets the same feeding level if this is tess than 1. 

In the von Bertalanffy equation m = 2/3 and n = 1. Hemmingsen ( 1960) found 
n = .75 ± .015 and Parker and Larkin (1959) cite various authors indicating that 
metabolic rate increases approximately as the . 73 power of weight, but since these 
results do not include temperature dependence they are not immediately comparable 
to our results. 

,We found that (m,n) = (.84, .74) which is significantly different from the usual Ber­
talanffy parameters (2/3, 1). It is a generally accepted hypothesis that m > n for most 
animal groups, because in that case weight has an asymptotic limitation Woo =. 
(B( 1 - Af)fhfk) 11

(n-m >. The estimates (m, n) = ( .84,. 74) indicates that w( r)---+ oo for 
r-+ oo for rainbow trout, if the growth characteristics for adult trout were equal to 
those of immature trout. But as the growth patterns for adult trout differs greatly 
from those of young trout the finding of m > n is not unreasonable. It is customary 
roughly to estimate the weight loss due to spawning to be 20 %. (When the trout 
has to migrate up from and down to the sea the loss will be approx. 40 %) . It is well 
known that salmonid fishes grow rapidly to a relatively large size and for their size 
have a very short lifespan (cf. Beverton and Holt, 1959). The two latter factors prevent 
the trout from growing to an infinitely large size, even if m> n, for mature trout. 

11 .1 MAXIMUM RATE OF FEEDING 

To describe maximum rate of feeding Elliott, 1975 a and b, applied the model 

D =An Wh, exp (b3 T) 

where W is live weight of the trout (W g) (Salmo trutta L.), D is the maximum dry 
weight of food (D m g) and T is temperature ( T C 0

). As food Gammarus pulex L. was 
used. W varied from 9 g to 302 g. Elliott's model equals the equation (R/~r)max = 
h~ exp(h2 t) wt:1 (cf. section 9.1). 

He found values of An, b1 and b3 in three distinct temperature ranges and the 
results were : 

Temperature Av I bl b3 

3.8- 6.6 .................... .654 .762± .027 .418 ± .035 
6.6-13.3 .................... 3.384 .759 ± .023 .171 ± .012 

13.3-18.4 .................... 5.956 .767 ± .041 .126±.031 

To convert Elliott's results to units comparable to our results An is multiplied by 
.004, i.e. it is assumed that 1 g live weight of trout corresponds to 1/4 g dry weight of 
Gammarus. 

Pentelow ( 1939) carried out maximum feeding experiments with 9 brown trout. 
The number ofobservations were 84 at 19 different temperatures (3.3°C-19.4°C). 
As food Gammarus pulex was used. Using his data to estimate the parameters in the 
model applied in the present work, the result is: 

h{ 

h2 
m 

Estimate 

.0171 

.127 

.867 

95 % confidence limits 

.0135-.0216 

.106 -.147 

. 787 -.947 

In Figs. 7 a and 7b comparisons of the results from Elliott, Pentelow, and the present 
work are shown. 
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11.2 FASTING CATABOLISM 

Pentelow (1939) made 77 observations at 10 different temperatures (2.8°C-15.6°C) 
on the weight loss in starving brown trout ( Salmo trutta L.). In some of the aquaria 
there was a single trout and in others there were more than one. As there is no clearly 
difference between these two categories, we have taken Pentelow's data together in 
the estimation of the parameters in the model applied in the present work. 

Pentelow's result is: 

Estimate 95 % confidence limits 

k, .00830 .00503-.0137 

k2 .0918 .0693 -.114 
n .759 .593 -.925 

In Figs. 8a and 8b comparisons of Pentelow's results and the present work are 
shown. 

The bigger fasting catabolism of the trout in Pentelow's experiment can be due to 
the fact that some of his fish probably not having been empty for food. As Pentelow 
says: "The fish were taken direct from the stock pond, and no information on how 
recently they have fed was obtained. Some, therefore, probably had food in their 
stomachs, whilst others were already empty." 
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Fig. 8b. 
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Fig. Sa and b. Fasting catabolism (g/day).- Pentelov, 1939. ----Present work, N> 1. 

11.3 MAINTENANCE RATION 

Several authors, e.g. Pentelow (1939), Brown (1957), Paloheimo & Dickie (1966a), 
Ursin (1967), and Brett et al. (1969), emphasize the maintenance ration, i.e. the 
ration allowing the fish just to maintain its weight. 

Ifwe in (10) put d~~r) = 0 and solve the equation for j, we get !maintenance· From 

(2) We Can also determine (d~~T0maintenance· 

(dR(r)/dr)maint = fmaint h1exp(h2t)wm 

Each of the equations have two solutions because we consider the assimilation 
efficiency as a decreasing function off (See section 4). But as f ~ 1, only one pair of 
the two solutions have a meaning. 
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Fig. 9a. Maintenance ration, N> 1. 
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Fig. 9b. Maintenance feeding level, N> 1. 
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11.4 FOOD CONVERSION RATIO 

In the context of production planning the food conversion ratio U(j, W, t) = dRjdW 
is an important figure. Usually it is desirable to minimize U. U is derived from (35) 
and (2) _ f 

dRjdW = B(l- Af)f- (k;jh;} exp ((k2- h2) t) wn-m 
in the case N> 1. Inserting the estimates 

- f 
U (j, W, t) = .62 ( 1 - .27f)f- .085 exp ( -.015t) W -.Io 

thus U ~ill be a slightly decr~asing function of temperature and weight, under the 
hypothesis that k2 < h2 and m > n. Due to the uncertainties of the estimates of pa­
rameters and to the stochastic terms c1 and c2, the expression of U is to be considered 
only as an indication of the functional coherence between U and j, W, t and we 
do not feel that it would be reasonable to draw any conclusion about optimal com­
binations of j, Wand t. In Figure 10 examples of U as a function off are shown. 
Figure 10 indicates that the concept of optimal combinations of j, Wand t might 
be of minor importance, when feeding levels greater that .3 are considered. This 
topic was discussed by Brett et al. ( 1969), but it is difficult to compare their results to 
those of the present work, since Brett et al. express the food eaten per day as a per­
centage of the weight of the fish and pay little attention to this perc~ntage decreasing 
with an increase in the weight of the fish (cf. Elliott, 197 5 b, Table 8.). 
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Fig. 10. Food conversion ratio. 
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11.5 DENSITY DEPENDENCE 

Shlaifer ( 1938) has shown that in a given volume of water an isolated goldfish 
consumes more oxygen and has a higher rate of locomotor activity than does each 
fish in a group of four. Further he showed that in a given volume of water each gold­
fish in a group of two consumes the same amount of oxygen and has the same rate of 
locomotor activity as does each fish in a group of four. This finding indicates that 
the split up into the two categories "one" and "many" is adequate without any 
grading of the concept "many". (However this was done mainly for the sake of con­
venience). 

In contrast with the findings of Shlaifer we found that in one aquarium one single 
trout has a lower fasting catabolism than each trout in a group of more than one. 
This difference is quite understandable if one looks at the ethology for goldfish and 
rainbow trout. The goldfish is a gregarious species whereas the rainbow trout in 
freshwater is a solitary species. ,When the goldfish is alone it displays appetitive 
behaviour consisting of orientation movements. And the consummatory act, which 
would bring the appetitive behaviour to an end, is that of being a member in a fish 
school. See e.g. Hemmings ( 1966) for the gregarious species roach, Rutilus rutilus (L). 
For the rainbow trout it is opposite. As a member of a school the trout will display 
orientation movements, and the consummatory act is that of being alone. 

We found that many trout eat less per individual than a single trout. Since one of 
the results of territorial behaviour is to prevent an overexploitation of the living 
space, for exemple through overgrazing (see e.g. ,Wynne-Edwards (1962)) our 
findings can be explained in the following way: ,When the territorium, as in the 
aquarium, is broken down it is conceivable that the fishes have a built-in mechanism 
which prevent overgrazing by inhibiting food intake. The stimulus for this mechanism 
should then be a species member. 



GROWTH RATE OF FISHES 311 

REFERENCES 

Barlett, M. S. ( 1966). An introduction to stochastic processes with special reference to methods and applications. Cam­
bridge University Press. 

Beverton, R. ]. H & S. ]. Holt ( 195 7). On the dynamics of exploited fish populations. Fishery Invest., Lond. 
Ser. //. vol. XX. 

Beverton, R. ]. H. & S. ]. Holt ( 1959). A review of the lifespans and mortality rates of fish in nature, and 
their relation to growth and other physiological characteristics. Ciba Found. Colt. Ageing, 5: 142-180. 

Brett, ]. R., ]. E. Shelbourn, & C. T Shoop (1969). Growth rate and body composition offingerling sockeye 
salmon. Oncorhynchus nerka, in relation to temperature and ration size. J. Fish. Res. Bd. Canada 26(9): 
2363-2397. 

Brown, M. E. (1957). Experimental studies of growth. Chapter IX in The physiology of fishes: 361-398. 
Brown, M. E. ( ed.). Academic Press. 

Cox, D. R. & H. D. Miller ( 1970). The theory of stochastic processes. Methuen & Co Ltd. 
Davis, G. E. & C. E. Warren (1971). Estimation of food consumption rates. Methodsfor assessment of fish 

production infresh waters: 227-248. Ricker, WE. (ed.). Blackwell, Oxford. 
Doob, ]. L. ( 1953). Stochastic Processes. John .Wiley & Sons, Inc. 
Elliot, ]. M. (1975a) .. Weight of food and time required to satiate brown trout, Salmo trutta L. Freshwater 

Biology, Vol. 5, No. 1, February 1975. pp: 51-64. 
Elliott,J. M. (1975b). Number of meals in a day, maximum weight of food consumed in a day and maximum 

rate of feeding for brown trout, Salmo trutta L. Freshwater Biology. Vol. 5, No. 3, June 1975. pp: 287-303. 
Hemmings, C. C. ( 1966). The mechanism of orientation of roach, Rutilus rutilus L in an odour gradient. 

]. Exptl. Biol. 45: 465-474. 
Hemmingsen, A M. ( 1950). The relation of standard (basal) energy metabolism to total fresh weight of 

living organisms. Rept. Steno Mem. Hosp. IV: 7-58. 
Hemmingsen, A. M. ( 1960). Energy metabolism as related to body size and respiratory surfaces, and its 

evolution. Rept. Steno Mem. Hosp. IX(//): 7-110. 
Kerr, S. R. ( 1971 a): Analysis of laboratory experiments on growth efficiency of fishes. J. Fish. Res. Bd. 

Canada 28(6): 801-808. 
Kerr, S. R. ( 1971 b). Prediction of fish growth efficiency in nature. /bid: 809-814. 
Larkin, P. A.,]. G. Terpenning, & R. R. Parker ( 1956). Size as a determinant of growth rate in rainbow trout, 

Salmo gairdneri. Trans. Amer. Fish. Soc. 1957: 84-96. 
Paloheimo, ]. E. & L. M. Dickie ( 1965). Food and growth of fishes. I. A growth curve derived from experi­

mental data. J. Fish. Res. Bd. Canada 22(2): 521-542. 
Paloheimo, ]. E. & L. M. Dickie ( 1966a). Food and growth of fishes II. Effects of food and temperature on 

the relation between metabolism and body weight. J. Fish. Res. Bd. Canada 23(6): 869-908. 
Paloheimo, ]. E. & L. M. Dickie (1966b). Food and growth offishes. Ill. Relations among food, body size, 

and growth efficiency. J. Fish. Res. Bd. Canada 23( 8): 1209-1248. 
Parker, R. R. & P.A. Larkin (1959). A concept of growth in fishes J. Fish. Res. Bd. Canada 16(5): 721-745. 
Pentelow, F. T K. (1939). The relation between growth and food consumption in the brown trout (Salmo 

trutta). ]. Exp. Biol., 16(4): 446-473. 
Putter, A. (1920). Studien iiber physiologische Ahnlichkeit. VI. Wachstumsahnlichkeiten. Pflugers Arch. 

Ges. Physiol. 180: 298-340. 
Shlaifer, A. ( 1938). Studies in mass physiology: effect of nu m hers upon the oxygen consumption and 

locomotor activity of Carassius auratus. Physiol. ,Zool. XI ( 4): 408-424. 
Sparre, P. ( 1976). A markovian decision process applied to optimization of production planning in fish 

farming. Meddr Danm. Fisk. Havunders. N. S. Vol. 7. pp: 111-197 
Ursin, E. ( 1967). A mathematica~ model of some aspects of fish growth, respiration and mortality. J. Fish. 

Res. Bd. Canada 24( 11): 2355-2453. 
Warren, C. E. & G. E. Davis ( 1967). Laboratory studies on the feeding, bioenergetics, and growth of fish. 

The biological basis of freshwater fish production: 175-213. Gerking, S. D. (ed). Blackwell, Oxford. 
Weatherl01, A. H. ( 1972). Growth and ecology of fish populations. Academic Press. 
Winberg, G. G. ( 1956). Rate of metabolism and food requirements of fishes. Fish. Res. Bd. Canada Transl. 

Ser. 194 (1960). 
Wynne-Edwards, V. C. ( 1962). Animal dipersion in relation to social behaviour. Oliver & Boyd. 



312 0. SPERBER, J. FROM AND P. SPARRE 

APPENDIX 

This Appendix describes the statistical method applied to the growth experiments. 
Topics treated in textbooks of statistic (e.g. Rao, 1973 or Searle, 1971) are given a 
very brief discussion. The purpose is to give information sufficient for the reader to 
se through all manipulations of the observations. 

THE LINEAR MODEL OF FULL RANK 

This section deals with a general description of the applied method. The variable names 
are arbitrarily chosen and do not refer to concepts defined in the foregoing. 

All estimations and tests are based on the linear model of full rank 

( 1) 

or in matrix notation 

Z=RP+e (2) 

Z;, i = 1,2, ... ,n are random variable (dependent variables), r;j, i = 1,2, ... ,n.j = 1,2, ... ,k. 
are numbers fixed in advance by the observer (independent variables) and E;, i = 1,2, ... ,n 
are stochastic terms with EE; = 0 for all i. The variance-covariance matrix for the c;'s is de­
signed V. {Jj,j = 1, 2, ... , k are the parameters to be estimated. Let Pj designate the estimate of 
flj· Then 

p = (R' v- 1R)- 1 R' v-~z 

To facilitate notation let X= V-1 ; 2 Rand y = v-112Z. Then (3) becomes 

fJ = (X'X)- 1 X'y 

y and y are designated observed and calculated values resp. 

;i = P1xil + P2xi2 + ... +plc xi le 

The multiple correlation coefficient is 

The residual error variance is estimated by 

&2 = (y -y)'(y -y) 
. n-k 

(3) 

(4) 

The confidence interval of {J; is given by Pi -atn-Tc ~ and Pi +&tn-Tc ~ where tn-Tc is the 
97.5% fractile of the t-distribution on n- k degrees of freedom, and V;; is the i'th diagonal 
element of (X' X) - 1

. 

X or R are the design matrices. 
The variance-covariance matrix of fJ is &2 (X' X) -I. 

The general linear hypothesis is stated as 

H: K'p =m. 

where K' is a (s X k)-matrix with rank s and m. is a vector of order s. The F-statistic for testing 
the hypothesis His 

F(H,s,n-k) = -h(K'fJ -m.)'(K'(X'X)-1 K)-1 (K'fJ -m.) 
sa 
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Experiment I. 

The notation is that of section 9.1. The experiment is based on 

ZvtJ = a{s(NvtJ) +a{'u(Nvij) +hztvJ + (S(tvj)ml + (1 -S(tvJ)m2) Wvij +~vij 

S (tvj) = { 1 ~f tvj ~ 10 
0 If tvj > 10 

where 

a;' = log h{' + E log c1 and a; = log h{ + E log c1 • The equation corresponding to (2) are 
shown in Figure 1. Assume thatVAR(~1 t1)=a2 for all i,J,VAR(~2 t1 ) =a2 /N2 t1 for 
all i, J and that COV(~vtJ' ~abc) = 0 if (v, i,J) =I= (a, b, c). Then the matrix V is 
defined. The hypothesis m1 = m2 is stated as 

Z= 

H1 : { 0 0 0 1 -1 } p = { 0} ; P' = (a{, a~, h2, m1, mz) 

0 tu 
0 tu 

0 tu 

0 tl2 

0 tl2 

4! • • 
• • • 
• • • 
• • • 

0 tlJl 

0 tlJl 

~ 
0 1 t21 

0 1 t21 

0 1 t22 

0 1 t22 

• • • 
• • • • • • 
• • • 
0 1 t2J2 
0 1 t2J2 

0 1 t2J2 

or Z = Rp +a 

~11 
~21 

~Mlll 
~12 

~Ml22 

• 
• 
• 
• 
0 

0 

J;t;;ll 

Vf/;M21 1 

Tt;l2 

Tt;M22 2 

• 
• 
• 
• 
0 
0 

0 

0 
0 

0 

0 

0 

• 
• 
• 
• 
~lJl 

~Ml]j J1 

0 

0 

0 

0 

• 
• 
• 
• 
Tt;lJ2 

Tt;2J2 

Vf/;M212 J2 

Figure 1. 

a{ 

a~' 

h2 ~ +a 
m1 
m2 

t ~ 10°C 

t> 10° c 

t~ 10°C 

t > 10° c 
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Under the hypothesis H1 the matrix R reduces to a (]1 + ] 2) X 4 matrix, and the 
hypothesis log h{ = log h~ is stated as 

H2: {1, -1, O,O}p = {0} ; P' =(a{, a~, h2 , m) 

Assume e1 to be log-normally distributed (Ee1 = 1 and VAR(e1) = ).1 ,1 /~7:). Then 
log e1 is normally distributed ( -0'2/2,0'2) where 0'2 =log ( 1 + A1 ' 1/ ~ 1:). Thus, Elog e1 = 
-0'2/2. That 0'2 is dependent on ~ 1:, introduces new problems, especially concerning 
the tests. But due to the general intricacy of the choice of~ 1:, this has been ignored 
(cf. section 9.1). Consider the case v = 1 and let 

Zuj =a{+ li2t11 +m wlij 

where a~' ~ and m are the least squares estimates . ..(lij is biased since 

E( exp ..(u1) ::f= h{ exp (h2 t1 1 ) w:!: 1 
which follows from 

E(exp..(u1) = exp(E..(u1+VAR(..(u1)/2) = h~exp(h2 t11 )w{71 exp(-0'2/2+VAR(..(u1 )/2) 

Thus, if the estimate a{= a; +0'2/2- VAR(Zuj)/2 is applied 

Zltj ==a;+ li2t11 +m wlij 

will be unbiased. As VAR (Zu1) depends on the independent variables the mean 
value of VAR (Zu1), J = 1, 2, ... , ] 1. i = 1, 2, ... , M 11 , is used as an approximation. 

Experiment Il I 

The experiment is based on lJt = l1t1DuJ + 1121 D2t1 + e3 (cf. 9.3). In the case J = 3 
the equation in matrix notation is 

Du1 D2u 0 0 0 0 

DlMll D2Mtl 0 0 0 0 11u 
0 0 Du2 D212 0 0 1121 

Y= 1112 
+ £3 

1122 
0 0 D1Mz2 D2M22 0 0 1113 
0 0 0 0 Du3 D213 1123 

0 0 0 0 Dl M33 D2M33 

The hypothesis l1u = 1112 = 1113 and 1121 = 1122 = 1123 is stated as 
11u 

~~ 
0 -1 0 0 

j) 
1121 

=l~l 1 0 -1 0 1112 
0 0 -1 1122 
0 0 0 1113 

1123 
A is estimated by A = {121 /{111 . The usual 95% confidence interval of A is not defined, 
so Fieller's theorem (cf. Finney, 1952) is applied to determine the fiducial limits. 
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INDEX OF SYMBOLS 

Variable names used in definitions of mathematical concepts (the text written in 
brevier types) are excluded from the index. Numbers in brackets refer to sections. 

Roman letters: 

Ao: 

A: 

B: 

Co: 

dl, d2: 

Dltj: 

E: 

f: 
F: 
G: 

h: 
H: 

hl' h2: 
h~, h;: 

]v: 
k: 
kl' k2: 
k~, k;: 
L: 

see L (f) . ( 4) . 

A constant in the equation L(f) =B(l-Af) (the factor {J(l-IX) con­
sidered as a function of f). Three alternative interpretations of A and B 
are given: · 
1 ) B = flo (1 - IXo) and A = Go in L1 (f) = flo (1 - Gof) ( 1 - IXo). 
2) B = {10 and A= Ao in L2(f) ={10 (1 -A0j). 
3) B = flo and A= Go +Ao in La (f) = {10 (1- (Go +Ao)f +AoGo.f), where 
the term A0 G0.f is ignored). ( 4) . 

A constant in the general expression for {J(l -IX). See A. (4). 

See L (f) . ( 4) . 

Parameters in the processes P1 and P2 defined as a non-Markov process. ( 5). 

(D.RJD.r) and D 2 t1 = f(D.RJD.r) for trout i at temperature t1 . (9.3). 

(E1 , E2 , ••••• ) environment vector. (7). 

feeding level. ( 3) . 

F(H, a, b) is the F-statistic on a, b degrees offreedom for the hypothesis H. 

G(w( r), rt-dRJdr)) is the catabolic term in the general growth equation. (3). 

coefficient of anabolism. (3). 

H = B(l -Af)jh. (5). 

h(t) = h1 exp(h2 t), where t =temperature. (7). 

h1 = h;u(N) +h~s(N), where N =number of trout. (7). 

the number of different temperatures considered at density v. (9.1). 

catabolism coefficient. (3). 

k(t) = k1 exp(k2 t), where t =temperature. (7). 

k1 = k;'u(N) +k;s(N), where N =number of trout. (7). 
L(f) is the factor {J(l -IX) considered as a function offeeding level. Three 
alternatives are considered: 
L1 (f) = flo (1 - G0j) ( 1 -IXo) (IX constant, fJ = flo (1 - Cof) 
L2 (f) = {10 ( 1 - A0j) ({J constant, IX = ( 1 - A0f)) 
La (f) = flo ( 1 - Gof) ( 1 - Aof) (IX = ( 1 - Aof) , fJ = flo ( 1 - Gof) ) 
IXo, {10 , A0 and G0 are constants. ( 4). 
The equation L(f) = B( 1 - Af) where A and B are constants is a com­
mon expression for L1 and ~ and an approximation of La. ( 4). 
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m: 

n: 
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exponent of anabolism. (3). 

exponent of anabolism for temperatures ~ 10° C and> 1 oo C resp. ( 10.1). 

number of aquaria used at density v and at temperature tvJ· (9.1). 

exponent of catabolism. (3). 

number of trout at density v in aquarium i and at temperature tvJ· (9.1). 

the stochastic process related to consumption, accounting for the devia­
tion from the expected consumption. ( 5). 

the stochastic process related to fasting catabolism, accounting for the 
deviation from expected fasting catabolism. ( 5). 

Q; ( r) : the family of stochastic processes, which constitutes the total random 
variation from the average growth, i = 1, 2, ..... (5). 

R( r) : wet weight of food consumed until time r. (3). 

(dRfdr)m_ax: maximum rate offeeding. (3). 

R: 

s(N): 

S(t) : 

parameters in the processes P1 and P2 , defined as non-Markov processes. 
( 5). 

design matrix in the linear model. (App.) 

s(N) = 1 if N> 1 and else 0, where N =number of trout. (7). 

S(t) = 1 if t ~ 10 and else 0, where t =temperature. (App.) 

t: temperature (°C). 

tvJ: temperature at experiment} at density v. (9.1). 

u(N): u(N) = 0 if N> 1 and else 1, where N =number of trout. (7). 

U(f, W, t): dRjdW, expected food conversion ratio. (1.4). 

V: 

w( r): 

the variance-covariance matrix of the dependent variables. (A pp.). 

live weight of the trout at time r. (3). 

(dwfdr)rasting: rate of weight decrease for a fasting trout. (3). 

w: w = (w(r + ~r) + w(r))/2. (5). 

w( r): 

W(r): 

Woo: 

Ytj: 

Zvij: 

WvtJ = logw at density v in aquarium i at temperature tvJ· If v = 2, w is 
the mean value of the N2 tJ trout. (9.1). 

stochastic differential coefficient of w(r). (9.1). 

W(r) = Ew(r). (10.4). 

Woo= (B(1 -Af)jhjk) 11 (n-m). (11). 

(~wf~r) +kwn for trout i at temperature tJ. (9.3). 

log(~R/~r)max at density v in aquarium i at temperature tvJ· 
Ifv = 2(~R/~r)max is the mean value ofthe N2 tJ trout. (9.1). 



GROWTH RATE OF FISHES 317 

Greek letters: 

:x: the fraction of the food absorbed producing the energy to absorb the 
food. (3). 

:xo : see L (f) . ( 4) . 

f3: the fraction of the food eaten absorbed. (3). 

f3o : see L (f) . ( 4) . 

p: the set of parameters in the linear model. (A pp.) 

r(dRjdr): anabolic term in the general growth equation. (3). 

~w: 

~ij: 

El' £2 : 

£3: 

cl, c2: 
A1, A2: 

J.ltj : 

e: 
a2: 

r: 

'Y(w): 

~w = w (~ r + r) - w( r) where ~ r is a non-infinitesimal time interval. (5 ). 
log c:1 - Elog c:1 (the stochastic term in experiment I) at density v in 
aquarium i and at temperature lvj· (9.3). 

c:1 = 1 +~Ptf~r and c:2 = 1 +~P2 /~r. (2). 

c:3 = -kwn ('c:2 - 1). The stochastic term in experiment Ill. (9.1). 

parameters in the processes P1 and P2 • ( 5). 

parameters in the processes P1 and P2 • ( 5). 

J.11 i =Band J.12 i =-AB at temperature ti. (9.3). 

multiple correlation coefficient. (A pp.) 

residual error variance. (A pp.) 

time in days. (3). 

'Y(w) = Hwm -kwn. (5). 


